HOOPS Exchange是什么?
是一組軟件庫,可以幫助開發人員在開發應用程序時讀取和寫入主流的 2D 和 3D 格式。HOOPS Exchange 支持在主流的3D 文件格式中讀取 CAD 數據,并支持將 3D 數據轉換為 PRC 數據格式,這是一種高度可壓縮和開放的文件格式,并已通過國際標準化組織 (ISO 14739-1:2014) 的認證。PRC 也是 Adobe PDF 中用于 3D 的格式之一。HOOPS Exchange 持續優化讀取各種 3D 數據的功能,尤其是對于來自計算機輔助設計 (CAD) 系統的數據。
本章我們學習創建一個使用 加載文件并使用 Qt3D 將其可視化的跨平臺應用程序。
介紹
本教程將向大家說明如何使用 檢索可視化工作流的圖形數據。學習完本教程后,您將對 HOOPS Exchange 如何提供對零件三角形網格的訪問、如何在 3D 空間中正確定位它們以及如何確定每個零件的基本顏色有一個基本的了解。
本教程有一些先決條件。首先,您應該已經完成了“打印裝配結構”教程,該教程涵蓋了文件加載和數據檢索等幾個基本概念,這些話題在此不再贅述。
HOOPS Exchange 是一個支持 Windows、macOS 和 Linux 的 SDK。我們將使用最流行的跨平臺 GUI 工具包 Qt,具體來說,我們將依賴 Qt3D 來實現跨平臺的圖形功能。我們將盡一切努力將工具包所需的專業知識降至最低,但是,您必須在計算機上安裝 Qt 6才能完成本教程。
像許多跨平臺開發社區一樣,Qt 已經開始向使用 CMake 作為默認構建系統的方向遷移。可以在此處找到有關使用 CMake 構建 Qt 應用程序的信息。本教程包括基于這些概念的完整 CMakeLists.txt 文件。Qt 的最新發行版包括 bin/qt-cmake,如果您尚未安裝 CMake,則可以使用它們。
不需要深入了解 Qt 和 CMake,但兩者都必須安裝并準備好使用。
第 0 步:項目設置
克隆項目
我們提供了一個 git 存儲庫來支持本教程。克隆主分支以建立項目的起點。
git 克隆 //github.com/techsoft3d/he_qt_basic_view.git
配置
使用您喜歡的文本編輯器打開文件CMakeLists.txt。在文件的頂部,您將看到HOOPS_EXCHANGE_DIR已設置變量。更新分配給此變量的值以反映您的特定安裝位置。
建造
由于本教程的目標是提供對 HOOPS Exchange 的理解,因此我們不會花太多時間在如何構建和運行 Qt 應用程序或 IDE 選擇和配置的主題上。但以防萬一您不熟悉它是如何完成的,我們將在此處提供一些提示。
視覺工作室代碼
Visual Studio Code 是跨平臺開發的絕佳選擇。它支持 C/C++ 開發和 CMake 作為構建配置系統。Microsoft在此處提供了此用例的出色概述。
編輯文件 _.vscode/settings.json_ 并更新 Qt 路徑以反映您本地安裝的 Qt。安裝 CMake Tools 擴展后,您可以使用狀態欄上的按鈕來配置、構建和運行應用程序。
Windows 上的 Visual C++
打開 Visual Studio 命令提示符并執行位于 Qt 安裝的 bin 文件夾中的 qtenv2.bat。接下來,在項目目錄中創建一個名為build的子文件夾并更改為它。運行qt-cmake ..以生成所需的文件。這將創建qt_he_viewer.sln,您可以使用命令evenv qt_he_viewer.sln 打開它。
開始運作
構建項目后,您就可以運行應用程序了。當您運行二進制文件時,您將看到一個標準的文件打開對話框。對話框的默認位置是包含 HOOPS Exchange 附帶的示例數據的文件夾。導航到 PRC 子文件夾并選擇helloworld.prc。該文件加載迅速,并出現空的 3D 視圖。
查看main.cpp的實現以熟悉程序流程。您會注意到 HOOPS Exchange 已初始化,并提示用戶輸入一個輸入文件,然后加載該文件。加載文件后,代碼繼續調用createScene,配置視圖、相機和光源。
我們將從創建場景開始,以一種有點抽象的方式。
第 1 步:創建場景
要創建場景,我們必須實現Scene.cppcreateScene中定義的函數。在編輯器中打開文件。你會注意到它被存根返回一個空對象。
在 HOOPS Exchange 數據模型中,曲面細分存在于表示項級別。這意味著我們將需要實現遍歷裝配結構、輸入每個零件定義并提取其中包含的表示項的功能。對于我們遇到的每個表示項目,我們需要做一些事情:
-
確定是否應顯示表示項。
-
生成我們可以輕松渲染的細分數據。
-
Qt3D從 細分創建網格。
-
Qt3D從HOOPS Exchange 樣式定義創建材質。
-
Qt3D從世界位置創建一個變換。
我們剛剛列出的所有功能都已在您克隆的項目中被刪除,因此我們可以編寫完整的 createScene 主體,而無需過多關注每個步驟的實現方式。
首先,我們將聲明并初始化一個結構來控制如何為表示項生成鑲嵌。創建后添加以下代碼行rootEntity.
// 創建曲面細分參數來控制行為
A3DRWParamsTessellationData tess_params;
A3D_INITIALIZE_DATA(A3DRWParamsTessellationData, tess_params);
// 使用“預設”選項獲得中等詳細程度
tess_params.m_eTessellationLevelOfDetail = kA3DTessLODMedium;
為簡單起見,我們在 options 結構中使用詳細級別枚舉,它控制一組特定的細分選項。這適用于基本的查看工作流程。我們將很快使用這個選項對象。
forEach_RepresentationItem接下來,我們將使用稍后實現的函數來迭代每個表示項。現在,讓我們假設它存在并且做我們想做的事——也就是說,它遍歷裝配結構,并且對于它遇到的每個零件,它都提取表示項。對于每個表示項,調用提供的 lambda。設置細分參數后添加以下代碼行。
// 遍歷每個表示項
forEach_RepresentationItem(model_file, [&](EntityArray const &path) {
});
lambda 的參數是 an EntityArray,,它是 的類型別名QVector<A3DEntity*>。它包含指向程序集層次結構中每個節點的有序指針列表。數組中的第一項是模型文件,然后是一系列產品,然后是零件。最后,數組以遇到的表示項結束。
對于這一步的其余部分,我們將按順序將代碼添加到 lambda 的主體中。
有時不應繪制表示項。為了確定這一點,我們將使用一種稱為級聯屬性的機制。級聯屬性允許我們在實例化它的組件的上下文中計算零件的屬性。特定裝配可以覆蓋特定零件的顏色或可見性。我們將把我們對級聯屬性的使用封裝在一個名為的簡單結構CascadedAttributes中,稍后我們將實現該結構。它被淘汰了,所以現在讓我們假設它的行為符合我們的需要。
在 lambda 的主體中添加以下代碼行:
CascadedAttributes ca( 路徑 );
// 確定是否應該跳過此項
如果( ca->m_bRemoved || !ca->m_bShow ) {
返回;
}
CascadedAttributes重載,提供對其中包含的結構operator->的直接訪問。A3DMiscCascadedAttributesData如果表示項目的這個實例被刪除或不應該顯示,我們會提前退出。
如果我們不及早退出,下一步就是在 Exchange 中生成曲面細分。為此,我們添加以下代碼行:
A3DRiRepresentationItem *ri = path.back();
// 使用我們上面聲明的選項生成曲面細分
A3DRiRepresentationItemComputeTessellation(ri, &tess_params);
現在我們已經對表示項進行了細分,我們可以訪問數據。
// 獲取此表示項的數據
A3DRiRepresentationItemData擺脫;
A3D_INITIALIZE_DATA(A3DRiRepresentationItemData,擺脫);
if ( A3D_SUCCESS != A3DRiRepresentationItemGet( ri, &rid ) ) {
返回;
}
// 曲面細分存儲在 m_pTessBase 中
自動tess_base = rid.m_pTessBase;
您應該非常熟悉上面介紹的模式,它使用不透明的對象句柄 ( ri) 將其關聯數據讀入結構。然后從結構中獲得鑲嵌句柄,我們就可以使用它了。
使用曲面細分的句柄,我們接下來嘗試創建一個Qt3D網格。如果我們成功了,我們就會創造并應用它的材料并進行轉換。這是通過以下方式完成的,使用了一些已經被刪除的附加函數:
// 創建網格
如果(自動網格= createMesh(tess_base)){
自動節點 =新Qt3DCore::QEntity(rootEntity);
節點->添加組件(網格);
// 創建材質
如果(自動材料= createMaterial(ca->m_sStyle)){
節點->添加組件(材料);
}
// 創建變換
如果(自動變換 = createTransform(路徑)){
節點->添加組件(變換);
}
}
如果獲得了網格,我們將創建一個節點來保存它,以及材質和變換。該節點是rootEntity.
仍然在 lambda 的主體內工作,我們還有最后一項任務。回想一下,每當您從 Exchange 讀取數據時,您必須確保通過第二次調用 getter 并提供空句柄來釋放任何關聯的內存。
使用 lambda 主體內的以下(也是最終)代碼行釋放表示項數據:
A3DRiRepresentationItemGet( nullptr , &rid);
這樣就完成了構建場景的高層實現。我們顯然為以后的步驟留下了許多實現細節,但我們已經完成了構成渲染模型所需的基本場景圖的任務。
第 2 步:程序集遍歷
從上一步來看,應該有點清楚還剩下什么要做。我們將以系統的方式攻擊每個任務,首先通過實現 ForEach_RepresentationItem 遍歷程序集層次結構。
讓我們從函數必須如何運行的簡短描述開始。在您的編輯器中打開文件 ForEachRepresentationItem.cpp,您將找到代碼的存根版本:
命名空間{
void forEach_Impl( EntityArray const &path, std::function< void (EntityArray
常量&)>常量&fcn ) {
Q_UNUSED(路徑);
Q_UNUSED(fcn);
}
}
無效forEach_RepresentationItem(A3DAsmModelFile *model_file,
std::function< void (EntityArray const &)> const &fcn ) {
forEach_Impl( { model_file }, fcn );
}
該函數有兩個參數。第一個是模型文件的不透明句柄。第二個參數是作為回調調用的函數對象。并且,正如我們在第 1 步中所討論的,實現預計將遍歷裝配結構并為遇到的每個表示項調用回調。
回調函數使用單個參數調用:一個EntityArray包含 Exchange 對象的不透明句柄的有序列表。該列表是順序的,從A3DAsmModelFile句柄開始,然后是一個或多個A3DAsmProductOccurrence句柄。句柄代表通向零件的裝配層次。當然,接下來就是A3DAsmPartDefinition手柄了。最后,路徑包含A3DRiRepresentationItem遇到的句柄。如果部件定義包含A3DRiSet對象(表示項集),則路徑中將有多個A3DRiRepresentationItem句柄。
公共函數立即調用一個匿名實現,該實現采用一個EntityArray而不是一個A3DAsmModelFile句柄。這樣做的用處很快就會變得清晰。該實現將只關心提供的路徑中的最后一個句柄。
一個很好的起點是一開始。所以,讓我們實現我們已經知道的情況——當這個函數被路徑中的單個對象調用時,它是一個A3DAsmModelFile句柄。在這種情況下,我們希望將每個子A3DAsmProductOccurrence句柄添加到路徑并再次調用該函數以進行更深入的挖掘。它應該看起來像這樣:
auto const ntt = path.back();
自動類型 = kA3DTypeUnknown;
if (A3D_SUCCESS != A3DEntityGetType(ntt, &type) ) {
返回;
}
EntityArray children;
如果(kA3DTypeAsmModelFile == 類型){
A3DAsmModelFileData mfd;
A3D_INITIALIZE_DATA(A3DAsmModelFileData, mfd);
如果(A3D_SUCCESS!= A3DAsmModelFileGet(ntt,&mfd)){
返回;
}
children = EntityArray(mfd.m_ppPOOccurrences,mfd.m_ppPOOccurrences +
mfd.m_uiPOOccurrencesSize);
A3DAsmModelFileGet( nullptr , &mfd);
}
對于(auto child : children ){
自動child_path = 路徑;
child_path.push_back(children auto child : children);
forEach_Impl(child_path, fcn);
}
A3DAsmProductOccurrence此實現是遞歸的,并使用句柄作為 的值調用自身path.back()。讓我們通過添加 if 子句來擴充處理這種情況的代碼。
否則 if ( kA3DTypeAsmProductOccurrence == type ) {
A3DAsmProductOccurrenceData 吊艙;
A3D_INITIALIZE_DATA(A3DAsmProductOccurrenceData, pod);
if (A3D_SUCCESS != A3DAsmProductOccurrenceGet(ntt, &pod) ) {
返回;
}
child = EntityArray( pod.m_ppPOccurrences, pod.m_ppPOccurrences +
pod.m_uiPOOccurrencesSize );
A3DAsmProductOccurrenceGet( nullptr , &pod);
}
從這里去哪里?這將處理整個裝配層次結構,直至節點包含零件。所以,除了上面實現中所示的處理children外,我們還必須檢查an是否A3DAsmProductOccurrence包含一個part。
確定零件是否存在有時就像檢查m_pPart產品出現結構中的字段一樣簡單。但這并沒有捕捉到共享部件實例化的常見情況。零件實例化是通過使用m_pPrototype句柄來實現的,該句柄引用了裝配節點的共享定義。如果一個節點有一個空m_pPart句柄,你還必須遞歸檢查它的原型,如果它有一個。要實現此邏輯,請在匿名命名空間的頂部添加 getPart 函數。
A3DAsmPartDefinition *getPart( A3DAsmProductOccurrence *po ) {
if ( nullptr == po ) {
返回 空指針;
}
A3DAsmProductOccurrenceData 吊艙;
A3D_INITIALIZE_DATA(A3DAsmProductOccurrenceData, pod);
if (A3D_SUCCESS != A3DAsmProductOccurrenceGet( po, &pod ) ) {
返回 空指針;
}
汽車零件 = pod.m_pPart ?pod.m_pPart : getPart( pod.m_pPrototype );
A3DAsmProductOccurrenceGet( nullptr , &pod);
返回部分;
}
現在,我們可以在剛剛添加的處理A3DAsmPartDefinition對象的子句中使用這個函數:
否則 if ( kA3DTypeAsmProductOccurrence == type ) {
A3DAsmProductOccurrenceData 吊艙;
A3D_INITIALIZE_DATA(A3DAsmProductOccurrenceData, pod);
if (A3D_SUCCESS != A3DAsmProductOccurrenceGet(ntt, &pod) ) {
返回;
}
孩子 = EntityArray( pod.m_ppPOccurrences, pod.m_ppPOccurrences +
pod.m_uiPOOccurrencesSize );
如果(汽車零件= pod.m_pPart?pod.m_pPart:getPart(pod.m_pPrototype)){
children.insert(children.begin(), part);
}
A3DAsmProductOccurrenceGet( nullptr , &pod);
}
我們已經完成了零件定義!所以讓我們在子句中添加部分定義遍歷:
} else if ( kA3DTypeAsmPartDefinition == type ) {
A3DAsmPartDefinitionData pdd;
A3D_INITIALIZE_DATA(A3DAsmPartDefinitionData, pdd);
if (A3D_SUCCESS != A3DAsmPartDefinitionGet(ntt, &pdd) ) {
返回;
}
children = EntityArray(pdd.m_ppRepItems,pdd.m_ppRepItems +
pdd.m_uiRepItemsSize );
A3DAsmPartDefinitionGet( nullptr , &pdd);
將我們帶到表示項目上,我們應該在其中調用回調函數,提供用于將我們帶到這里的路徑。但在我們這樣做之前,我們不能忘記作為集合的特定表示項類型。如果遇到這種對象類型,我們必須進一步遍歷。
處理所有這些細節應該看起來像這樣,作為條件的最后一個 else 子句:
否則{
如果(kA3DTypeRiSet == 類型){
A3DRiSetData risd;
A3D_INITIALIZE_DATA(A3DRiSetData, risd);
if (A3D_SUCCESS != A3DRiSetGet(ntt, &risd) ) {
返回;
}
children = EntityArray(risd.m_ppRepItems, risd.m_ppRepItems + risd.m_uiRepItemsSize);
A3DRiSetGet( nullptr , &risd);
}其他{
fcn(路徑);
}
}
如果您現在感覺有點頭暈,請不要擔心,這是完全正常的。我們一起成功地實現了一個行為良好的函數,用于以對我們非常有用的方式遍歷 Exchange 產品結構。通過使用函數對象,我們將遍歷與構建場景圖的工作分開。在此過程中,您可能已經對 Exchange 的數據結構有所了解。
第 3 步:級聯屬性
讓我們繼續實現我們在步驟 1 中創建場景時使用的每個函數。我們遇到的下一個存根函數是 lambda 內部的CascadedAttributes結構。此結構在文件CascadedAddtributes.h中實現。打開它看看。您將找到一個空的構造函數和析構函數,我們現在將實現它們。
構造函數有一個參數,你現在應該很熟悉了。它是一個 EntityArray,表示從模型文件到我們感興趣的表示項的 Exchange 對象的路徑。我們的構造函數的工作是計算A3DMiscCascadedAttributesData與該路徑對應的對象。我們將按照此處的編程指南關于級聯屬性的部分提供的指導來執行此操作。
實現構造函數如下:
// 創建一個向量來保存級聯屬性句柄
QVector<A3DMiscCascadedAttributes*> cascaded_attribs;
// 創建“根”級聯屬性句柄
cascaded_attribs.push_back( nullptr );
A3DMiscCascadedAttributesCreate( &cascaded_attribs.back() );
// 對于路徑中的每個實體,
對于(自動ntt:路徑){
如果(A3DEntityIsBaseWithGraphicsType(ntt)){
// 獲取之前級聯屬性的句柄
自動父親 = cascaded_attribs.back();
// 為這個實體創建一個新的級聯屬性句柄
cascaded_attribs.push_back( nullptr );
A3DMiscCascadedAttributesCreate( &cascaded_attribs.back() );
// 將此句柄壓入堆棧
A3DMiscCascadedAttributesPush( cascaded_attribs.back(), ntt, 父親);
}
}
// 計算級聯屬性數據
A3D_INITIALIZE_DATA(A3DMiscCascadedAttributesData, d);
A3DMiscCascadedAttributesGet( cascaded_attribs.back(), &d );
對于(自動屬性:cascaded_attribs){
A3DMiscCascadedAttributesDelete(attrib);
}
代碼中的注釋應該合理地解釋方法是什么。
一旦構造了這個對象,我們就適當地填充了數據字段。剩下要做的就是釋放析構函數中的對象。將這行代碼添加到析構函數中:
A3DMiscCascadedAttributesGet( nullptr , &d);
僅此而已。
完成此步驟意味著您已經創建了一個簡單的結構來管理任意 EntityArray 的級聯屬性。這與我們工作流程的其余部分很好地結合在一起,并直接利用了我們實現的方法來遍歷產品結構。
第 4 步:創建網格
在下一步中,我們將介紹從 HOOPS Exchange 讀取曲面細分所需的代碼,并創建Qt3D適合渲染的相應對象。這項工作將在文件中完成Mesh.cpp。現在在你的編輯器中打開它,你會發現熟悉的 stubbed out 實現。
要開始這項任務,我們應該對傳入的句柄執行一些健全性檢查。具體來說,我們要確保它是我們要為這個基本查看工作流處理的正確的具體對象類型。
A3DEEntityType tess_type = kA3DTypeUnknown;
if (A3D_SUCCESS != A3DEntityGetType( tess_base, &tess_type ) ) {
返回 空指針;
}
// 確保我們只處理我們關心的類型
如果(苔絲類型!= kA3DTypeTess3D){
返回 空指針;
}
傳遞給函數的句柄是一個名為的基類型A3DTessBase.對于這個基本的查看工作流,我們將只處理具體類型A3DTess3D.如果傳入一個空句柄,此代碼將正確處理它并退出。
基本鑲嵌類型包含我們需要的所有派生類型共有的信息,特別是坐標數組。添加代碼以從 HOOPS Exchange 讀取基礎數據。
// 從 tess 基礎數據中讀取坐標數組
A3DTessBaseData 待定;
A3D_INITIALIZE_DATA(A3DTessBaseData,待定);
if ( A3D_SUCCESS != A3DTessBaseGet( tess_base, &tbd ) ) {
返回 空指針;
}
A3DDouble const *coords = tbd.m_pdCoords;
A3DUns32 const n_coords = tbd.m_uiCoordSize;
坐標數據以 C 樣式數組的形式提供 - 也就是說,它是一個指向指定長度的雙精度數組的指針。大小總是能被 3 整除。
下一個任務是獲取與具體細分類型相關的數據。我們將從獲取法線向量的 C 樣式數組開始。
3DTess3D數據 t3dd;
A3D_INITIALIZE_DATA(A3DTess3DData, t3dd);
if ( A3D_SUCCESS != A3DTess3DGet( tess_base, &t3dd ) ) {
A3DTessBaseGet( nullptr , &tbd);
返回 空指針;
}
A3DDouble const *normals = t3dd.m_pdNormals;
A3DUns32 const n_normals = t3dd.m_uiNormalSize;
還存儲在對象A3DTess3DData數組中A3DTessFaceData,每個拓撲面在精確幾何表示中一個。現在我們有了坐標和法線向量的數組,我們可以遍歷面部數據并解釋其中引用的鑲嵌。當我們遍歷面時,我們將構建一個包含位置和法線向量的單個 Qt 緩沖區,以及一個簡單的“扁平化”索引數組。
每個實例都A3DTessFaceData包含一個位標志字段,用于描述三角形數據的存儲方式。通過使用 HOOPS Exchange 生成曲面細分,我們可以合理地確保只有基本三角形存在,因此我們不必擔心在從輸入文件本身。我們通過生成曲面細分對性能造成了影響,但好處是用于讀取生成的數據的簡化代碼塊。
這是從 HOOPS Exchange 讀取三角形數據的循環。它交錯三角形頂點位置及其法線向量,這通常在可視化工作流程中使用的頂點緩沖區對象中完成。
QVector<quint32> q_indices;
QByteArray 緩沖區字節;
quint32 const stride = sizeof (float) * 6; // 3 表示頂點 + 3 表示法線
對于(自動tess_face_idx = 0u; tess_face_idx < t3dd.m_uiFaceTessSize; ++tess_face_idx ) { A3DTessFaceData const &d = t3dd.m_psFaceTessData[tess_face_idx];
自動sz_tri_idx = 0u;
自動ti_index = d.m_uiStartTriangulated;
if (kA3DTessFaceDataTriangle & d.m_usUsedEntitiesFlags) {
auto const num_tris = d.m_puiSizesTriangulated[sz_tri_idx++];
自動 常量pt_count = num_tris * 3; // 每個三角形 3 分
auto const old_sz = bufferBytes.size();
bufferBytes.resize(bufferBytes.size() + stride * pt_count);
auto fptr = reinterpret_cast< float * > (bufferBytes.data() + old_sz);
對于(自動三= 0u;三<num_tris;三++){
對于(自動垂直= 0u;垂直<3u;垂直++){
自動 常量&normal_index =
t3dd.m_puiTriangulatedIndexes[ti_index++];
自動 常量&coord_index =
t3dd.m_puiTriangulatedIndexes[ti_index++];
*fptr++ = coords[coord_index];
*fptr++ = coords[coord_index+1];
*fptr++ = coords[coord_index+2];
*fptr++ = normals[normal_index];
*fptr++ = normals[normal_index+1];
*fptr++ = normals[normal_index+2];
q_indices.push_back(q_indices.size());
}
}
}
}
當這個循環結束時,我們留下一個原始緩沖區,其中包含身體中每個三角形的浮點頂點位置和法線向量。它們按順序存儲,不考慮共享索引值的可能性。這導致緩沖區可能比需要的更大,但簡化了我們呈現的代碼。
我們從 Exchange 獲得了我們需要的所有數據,所以讓我們自己清理一下。
A3DTess3DGet( nullptr , &t3dd);
A3DTessBaseGet( nullptr , &tbd);
我們必須通過創建Qt3D渲染剛剛捕獲的數據所需的原語來完成該功能。正如本教程開頭所提到的,我們不會花太多時間來描述細節,Qt3D,而是根據需要呈現代碼:
auto buf = new Qt3DCore::QBuffer();
buf->setData(bufferBytes);
自動幾何=新的QGeometry;
auto position_attribute = new QAttribute(buf,
QAttribute::defaultPositionAttributeName(), QAttribute::Float, 3, q_indices.size(), 0, stride);
幾何->addAttribute(位置屬性);
auto normal_attribute = new QAttribute( buf,
QAttribute::defaultNormalAttributeName(), QAttribute::Float, 3, q_indices.size(), sizeof (float) * 3, stride );
幾何->addAttribute( normal_attribute );
QByteArray indexBytes;
QAttribute::VertexBaseType ty;
如果(q_indices.size() < 65536) {
// 我們可以使用 USHORT
ty = QAttribute::UnsignedShort;
indexBytes.resize(q_indices.size() * sizeof (quint16));
quint16 *usptr = reinterpret_cast< quint16* > (indexBytes.data());
for ( int i = 0; i < int(q_indices.size()); ++i)
*usptr++ = static_cast<quint16>(q_indices.at(i));
}其他{
// 使用 UINT - 不需要轉換,但讓我們確保 int 是 32 位的!
ty = QAttribute::UnsignedInt;
Q_ASSERT( sizeof ( int ) == sizeof (quint32));
indexBytes.resize(q_indices.size() * sizeof (quint32));
memcpy(indexBytes.data(), reinterpret_cast< const char * > (q_indices.data()), indexBytes.size());
}
自動*indexBuffer = new Qt3DCore::QBuffer(); indexBuffer->setData(indexBytes);
QAttribute *indexAttribute = new QAttribute(indexBuffer, ty, 1, q_indices.size());
indexAttribute->setAttributeType(QAttribute::IndexAttribute);
幾何->addAttribute(indexAttribute);
自動渲染器 =新Qt3DRender::QGeometryRenderer();
渲染器->setGeometry(幾何);
返回渲染器
完成此步驟后,您已達到一個重要里程碑。現在,您可以加載單個零件并查看它。它將以默認顏色(紅色)顯示,但應該是可見的。程序集無法正確顯示,因為我們尚未處理轉換,但加載示例文件 samples/data/prc/Flange287. prc,您應該看到以下內容:
接下來,我們將專注于使轉換正確,以便我們可以正確地可視化程序集。
第 5 步:創建轉換
現在我們在屏幕上有了一些東西,讓我們添加在世界中正確定位對象所需的代碼。完成后,我們將能夠加載和查看程序集。
在程序集文件中,程序集樹的各個節點包含本地轉換。每個變換都相對于其父級應用。這意味著,要計算每個零件的世界變換,我們必須在通向零件實例的路徑中累積每個裝配節點的變換。
根據這個描述,我們可以開始編寫 createTransform(在 Transform.cpp 中找到)的實現,如下所示:
QMatrix4x4 網絡矩陣;
對于(自動 常量ntt:路徑){
A3DMiscTransformation *xform = getTransform(ntt);
net_matrix *= toMatrix( xform );
}
自動xform =新Qt3DCore::QTransform();
xform->setMatrix(net_matrix);
返回xform;
這個實現完全按照我們所描述的方便的事實來描述,路徑包括指向表示項的程序集層次結構中每個對象的順序句柄列表。它使用了兩個我們仍然必須定義的函數,getTransform我們toMatrix.將在上面的匿名命名空間中實現它們createTransform.
我們getTransform.將從它的用法開始,這個函數接受一個實體句柄并返回一個A3DMiscTransformation句柄。我們必須實現這個函數來確定傳入的實體的類型,并從它返回轉換(如果存在)。
在從模型文件到表示項的路徑中,唯一可能包含轉換的對象類型是A3DAsmProductOccurrence和A3DRiRepresentationItem.我們的代碼必須處理這兩種情況。實現getTransform功能如下:
命名空間{
A3DMiscTransformation *getTransform( A3DEntity *ntt ) {
A3DMiscTransformation *result = nullptr ;
A3DEEntityType ntt_type = kA3DTypeUnknown;
A3DEntityGetType(ntt, &ntt_type );
if ( kA3DTypeAsmProductOccurrence == ntt_type ) {
A3DAsmProductOccurrenceData d;
A3D_INITIALIZE_DATA(A3DAsmProductOccurrenceData, d);
A3DAsmProductOccurrenceGet(ntt, &d);
結果 = d.m_pLocation ?d.m_pLocation:getTransform(d.m_pPrototype);
A3DAsmProductOccurrenceGet( nullptr , &d);
} else if (ntt_type > kA3DTypeRi && ntt_type <= kA3DTypeRiCoordinateSystemItem) {
A3DRiRepresentationItemData d;
A3D_INITIALIZE_DATA(A3DRiRepresentationItemData, d);
A3DRiRepresentationItemGet(ntt, &d);
如果(自動ti_cs = d.m_pCoordinateSystem){
A3DRiCoordinateSystemData cs_d;
A3D_INITIALIZE_DATA(A3DRiCoordinateSystemData, cs_d);
A3DRiCoordinateSystemGet(d.m_pCoordinateSystem, &cs_d);
結果 = cs_d.m_pTransformation;
A3DRiCoordinateSystemGet( nullptr , &cs_d);
}
A3DRiRepresentationItemGet( nullptr , &d);
}
返回結果;
}
}
在這個實現中有兩個值得注意的地方。也許你已經發現了它們。
首先,在 if 子句中,kA3DTypeAsmProductOccurrence,您可能已經注意到選項結果的三元運算符。如果為空,getTransform則使用原型指針遞歸調用。m_pLocation這是因為裝配節點在未被覆蓋時會從其原型“繼承”位置字段。
第二個注釋在 else if 條件本身中。因為A3DEntityGetType返回提供的實體的具體類型,所以我們必須使用這里介紹的邏輯來查看實體是否是所有可能的表示項類型中的任何一種。不幸的是,它依賴于枚舉值。我愿意接受有關處理此問題的更好方法的建議(ExchangeToolkit.h有一個名為 的函數isRepresentationItem)。
有了A3DMiscTransformation句柄,我們現在準備實現 toMatrix,它必須將句柄轉換為 aQMatrix4x4. A3DMiscTranformation是具有兩種可能的具體類型的基類句柄:A3DMiscCartesianTransformation我們A3DMiscGeneralTransformation.必須處理這兩種情況。為此,請使用以下代碼在匿名命名空間的頂部創建函數:
QMatrix4x4 toMatrix(A3DMiscTransformation *xfrm){
如果(xfrm){
A3DEEntityType xfrm_type = kA3DTypeUnknown;
A3DEntityGetType(xfrm, &xfrm_type);
開關(xfrm_type){
案例kA3DTypeMiscCartesianTransformation:
返回getMatrixFromCartesian(xfrm);
休息;
案例kA3DTypeMiscGeneralTransformation:
返回getMatrixFromGeneralTransformation(xfrm);
休息;
默認:
throw std::invalid_argument( "意外類型。" );
休息;
}
}
返回QMatrix4x4();
}
一般變換將其矩陣表示為代表 4x4 矩陣的 16 元素雙精度數組。QMatrix4x4將這些值復制到對象中很簡單。在匿名命名空間的頂部創建以下函數來處理這種情況。
QMatrix4x4 getMatrixFromGeneralTransformation(A3DMiscGeneralTransformation *xform){
A3DMiscGeneralTransformationData d;
A3D_INITIALIZE_DATA(A3DMiscGeneralTransformationData, d);
A3DMiscGeneralTransformationGet(xform, &d);
自動 常數系數 = d.m_adCoeff;
QMatrix4x4 結果;
for (自動行 = 0u; 行 < 4u; ++row ) {
對于(自動col = 0u;col < 4u;++col){
結果(row,col) = static_cast< float > (coeff[row + col * 4]);
}
}
返回結果;
處理笛卡爾變換的情況要復雜一些。我們必須讀取基本數據并執行一些元素代數來計算矩陣的值。將此代碼添加到匿名命名空間以提取笛卡爾變換數據。
QMatrix4x4 getMatrixFromCartesian(A3DMiscCartesianTransformation *xform){
A3DMiscCartesianTransformationData d;
A3D_INITIALIZE_DATA(A3DMiscCartesianTransformationData, d);
A3DMiscCartesianTransformationGet(xform, &d);
auto const mirror = (d.m_ucBehaviour & kA3DTransformationMirror) ?-1。: 1.;
auto const s = toQVector3D(d.m_sScale);
auto const o = toQVector3D(d.m_sOrigin);
auto const x = toQVector3D(d.m_sXVector);
auto const y = toQVector3D(d.m_sYVector);
auto const z = QVector3D::crossProduct( x, y ) * mirror;
A3DMiscCartesianTransformationGet( nullptr , &d);
返回QMatrix4x4(
xx() * sx(), yx() * sy(), zx() * sz(), ox(),
xy() * xx(), yy() * sy(), zy() * sz(), oy(),
xz() * sx(), yz() * sy(), zz() * sz(), oz(),
0.f, 0.f, 0.f, 1.f
);
}
此代碼使用從對象toQVector3D創建 a的函數。它在Transform.h中實現。QVector3DA3DVector3DData
添加此功能后,您將擁有一個完整的實現以供測試。運行您的應用程序并加載一個程序集文件,例如data/prc/_micro engine.prc。
第 6 步:創建材料
本教程的最后一步是創建代表我們從 Exchange 讀取的樣式數據的 Qt3D 材質。要確定零件的外觀,我們必須依賴從第 3 步的級聯屬性助手中檢索到的數據。回想一下,可見性是由通過裝配的特定路徑決定的。應以相同的方式計算應繪制的部分樣式。在createScene,我們調用函數的主體中,createMaterial并從我們的級聯屬性助手中傳遞樣式數據。
打開文件材料。cpp 這樣我們就可以開始實現該功能了。您將看到創建了默認材質,這就是所有部件都顯示為紅色的原因。傳入此函數的樣式數據對象可以通過 3 種不同的方式指定材質信息。最簡單的情況是單色。讓我們從處理那個案例開始。
更新函數如下:
Qt3DCore::QComponent *createMaterial( A3DGraphStyleData const &style_data ) {
自動材質 =新Qt3DExtras::QDiffuseSpecularMaterial();
材料->setDiffuse(QColor(“紅色”));
如果(!style_data.m_bMaterial){
auto const a = style_data.m_bIsTransparencyDefined ?style_data.m_ucTransparency:255u;
材料->setDiffuse(getColor(style_data.m_uiRgbColorIndex, a));
}
退回材料;
}
在這里,我們使用了一個我們仍然必須實現的getColor.函數,這個函數接受一個 RGB 顏色索引(和 alpha)并在上面的匿名命名空間中返回一個QColor.實現getColorcreateMaterial.
命名空間{
QColor getColor(A3DUns32 const &color_idx, int const &a) {
如果(A3D_DEFAULT_COLOR_INDEX == color_idx){
返回QColor( 255, 0, 0 );
}
A3DGraphRgbColorData rgb_color_data;
A3D_INITIALIZE_DATA(A3DGraphRgbColorData, rgb_color_data);
A3DGlobalGetGraphRgbColorData(color_idx, &rgb_color_data);
自動 常量&r = rgb_color_data.m_dRed;
自動 常數&g = rgb_color_data.m_dGreen;
自動 常量&b = rgb_color_data.m_dBlue;
返回QColor( static_cast<int>(r * 255), static_cast<int>(g * 255), static_cast<int>(b * 255), a);
}
}
顏色數據通過整數索引存儲在 中。這個實現首先檢查索引是否等于A3D_DEFAULT_COLOR_INDEX,表示沒有分配顏色。在這種情況下,我們返回紅色,你會認為這是我最喜歡的顏色,但你錯了。從 Exchange 的雙精度定義創建QColor對象是一件簡單的事情,自然而然。
通過此實現,您會發現許多部件現在將加載并以正確的顏色顯示。
讓我們添加一個額外的案例來處理樣式數據可以采用的兩種或三種形式。使用以下 else 塊更新 createMaterial 中的 if 子句。
否則{
A3DBool is_textuture = false ;
A3DGlobalIsMaterialTexture(style_data.m_uiRgbColorIndex, &is_texuture);
如果(!is_textuture){
A3DGraphMaterialData material_data;
A3D_INITIALIZE_DATA(A3DGraphMaterialData, material_data);
A3DGlobalGetGraphMaterialData(style_data.m_uiRgbColorIndex, &material_data);
auto constambient_color = getColor(material_data.m_uiAmbient, static_cast<int>(255 * material_data.m_dAmbientAlpha));
auto constdiffuse_color = getColor(material_data.m_uiDiffuse, static_cast<int>(255 * material_data.m_dDiffuseAlpha));
if (ambient_color.alpha() == 255 &&diffuse_color.alpha() == 0) {
材料->setDiffuse(ambient_color);
}否則 if (ambient_color.alpha() == 0 &&diffuse_color.alpha() == 255) {
材料->setDiffuse(diffuse_color);
}
材質->setSpecular(getColor(material_data.m_uiSpecular,material_data.m_dSpecularAlpha));
}
}
這可以處理稍微復雜的材質定義。處理紋理超出了本基本查看教程的范圍。我們已經處理了兩種最常見的樣式定義情況,并且我們正在返回一個合理的 Qt3D 材料。
HOOPS Exchange是旗下的一款高性能CAD數據格式轉換工具,通過單一接口可完成30多種數據格式轉換,如果您感興趣可聯系我們申請60天免費試用!
慧都深耕行業近20年,始終緊跟全球前沿技術,持續投入核心技術研發,在相關專業技術領域建立自身優勢,不斷為客戶數字化、智能化賦能!
慧都科技是Tech Soft 3D-HOOPS在中國區的唯一增值服務商,負責試用,咨詢,銷售,技術支持,售后,旨在為企業提供一站式的3D開發解決方案。如果您的企業目前也有、的需求,歡迎咨詢在線客服申請3D 輕量化引擎的60天免費試用。
↓↓掃碼添加客服微信,及時獲取“HOOPS技術”支持↓↓
標簽:
本站文章除注明轉載外,均為本站原創或翻譯。歡迎任何形式的轉載,但請務必注明出處、不得修改原文相關鏈接,如果存在內容上的異議請郵件反饋至chenjj@fc6vip.cn