原創|行業資訊|編輯:龔雪|2015-11-13 11:38:03.000|閱讀 552 次
概述:隨著Hadoop在國內的迅速崛起,MapReduce也逐漸引起開發人員的重視,作為Hadoop的核心,讓我們一起來看看它是怎樣運作的。
# 界面/圖表報表/文檔/IDE等千款熱門軟控件火熱銷售中 >>
相關鏈接:
一、什么是MapReduce?
MapReduce是一種編程模型,用于大規模數據集(大于1TB)的并行運算。概念"Map(映射)"和"Reduce(歸約)",是它們的主要思想,都是從函數式編程語言里借來的,還有從矢量編程語言里借來的特性。它極大地方便了編程人員在不會分布式并行編程的情況下,將自己的程序運行在分布式系統上。 當前的軟件實現是指定一個Map(映射)函數,用來把一組鍵值對映射成一組新的鍵值對,指定并發的Reduce(歸約)函數,用來保證所有映射的鍵值對中的每一個共享相同的鍵組。
說著挺抽象,我們來看下圖,首先明確MapReduce在Hadoop項目中的位置。
Hadoop實際上就是谷歌三寶的開源實現,Hadoop MapReduce對應Google MapReduce,HBase對應BigTable,HDFS對應GFS。HDFS(或GFS)為上層提供高效的非結構化存儲服務,HBase(或BigTable)是提供結構化數據服務的分布式數據庫,Hadoop MapReduce(或Google MapReduce)是一種并行計算的編程模型,用于作業調度。
簡單概括的說,MapReduce是將一個大作業拆分為多個小作業的框架(大作業和小作業應該本質是一樣的,只是規模不同),用戶需要做的就是決定拆成多少份,以及定義作業本身。
二、map函數和reduce函數
map函數和reduce函數是交給用戶實現的,這兩個函數定義了任務本身。
map函數:接受一個鍵值對(key-value pair),產生一組中間鍵值對。MapReduce框架會將map函數產生的中間鍵值對里鍵相同的值傳遞給一個reduce函數。
reduce函數:接受一個鍵,以及相關的一組值,將這組值進行合并產生一組規模更小的值(通常只有一個或零個值)。
統計詞頻的MapReduce函數的核心代碼非常簡短,主要就是實現這兩個函數。
map(String key, String value): // key: document name // value: document contents for each word w in value: EmitIntermediate(w, "1"); reduce(String key, Iterator values): // key: a word // values: a list of counts int result = 0; for each v in values: result += ParseInt(v); Emit(AsString(result));
在統計詞頻的例子里,map函數接受的鍵是文件名,值是文件的內容,map逐個遍歷單詞,每遇到一個單詞w,就產生一個中間鍵值對<w, "1">,這表示單詞w咱又找到了一個;MapReduce將鍵相同(都是單詞w)的鍵值對傳給reduce函數,這樣reduce函數接受的鍵就是單詞w,值是一串"1"(最基本的實現是這樣,但可以優化),個數等于鍵為w的鍵值對的個數,然后將這些“1”累加就得到單詞w的出現次數。最后這些單詞的出現次數會被寫到用戶定義的位置,存儲在底層的分布式存儲系統(GFS或HDFS)。
三、MapReduce工作原理
上圖是論文里給出的流程圖。一切都是從最上方的user program開始的,user program鏈接了MapReduce庫,實現了最基本的Map函數和Reduce函數。圖中執行的順序都用數字標記了。
1、MapReduce庫先把user program的輸入文件劃分為M份(M為用戶定義),每一份通常有16MB到64MB,如圖左方所示分成了split0~4;然后使用fork將用戶進程拷貝到集群內其它機器上。
2、user program的副本中有一個稱為master,其余稱為worker,master是負責調度的,為空閑worker分配作業(Map作業或者Reduce作業),worker的數量也是可以由用戶指定的。
3、被分配了Map作業的worker,開始讀取對應分片的輸入數據,Map作業數量是由M決定的,和split一一對應;Map作業從輸入數據中抽取出鍵值對,每一個鍵值對都作為參數傳遞給map函數,map函數產生的中間鍵值對被緩存在內存中。
4、緩存的中間鍵值對會被定期寫入本地磁盤,而且被分為R個區,R的大小是由用戶定義的,將來每個區會對應一個Reduce作業;這些中間鍵值對的位置會被通報給master,master負責將信息轉發給Reduce worker。
5、master通知分配了Reduce作業的worker它負責的分區在什么位置(肯定不止一個地方,每個Map作業產生的中間鍵值對都可能映射到所有R個不同分區),當Reduce worker把所有它負責的中間鍵值對都讀過來后,先對它們進行排序,使得相同鍵的鍵值對聚集在一起。因為不同的鍵可能會映射到同一個分區也就是同一個Reduce作業(誰讓分區少呢),所以排序是必須的。
6、reduce worker遍歷排序后的中間鍵值對,對于每個唯一的鍵,都將鍵與關聯的值傳遞給reduce函數,reduce函數產生的輸出會添加到這個分區的輸出文件中。
7、當所有的Map和Reduce作業都完成了,master喚醒正版的user program,MapReduce函數調用返回user program的代碼。
所有執行完畢后,MapReduce輸出放在了R個分區的輸出文件中(分別對應一個Reduce作業)。用戶通常并不需要合并這R個文件,而是將其作為輸入交給另一個MapReduce程序處理。整個過程中,輸入數據是來自底層分布式文件系統(GFS)的,中間數據是放在本地文件系統的,最終輸出數據是寫入底層分布式文件系統(GFS)的。而且我們要注意Map/Reduce作業和map/reduce函數的區別:Map作業處理一個輸入數據的分片,可能需要調用多次map函數來處理每個輸入鍵值對;Reduce作業處理一個分區的中間鍵值對,期間要對每個不同的鍵調用一次reduce函數,Reduce作業最終也對應一個輸出文件。
本文參考自 轉載請注明文章轉載自:慧都控件網
本站文章除注明轉載外,均為本站原創或翻譯。歡迎任何形式的轉載,但請務必注明出處、不得修改原文相關鏈接,如果存在內容上的異議請郵件反饋至chenjj@fc6vip.cn